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ABSTRACT 

We study the control of free vibration with large amplitude in a piezothermoelastic laminated beam subjected to 

a uniform temperature with a feedback control system.  The analytical model is the symmetrically cross-ply 

laminated beam composed of the elastic and piezoelectric layers.  On the basis of the von Kármán strain and the 

classical laminate theory, the governing equations for the dynamic behavior are derived.  The dynamic behavior 

is detected by the electric current in the sensor layer through the direct piezoelectric effect.  The electric voltage 

with the magnitude of the current multiplied by the gain is applied to the actuator layer to constitute a feedback 

control system.  The governing equations are reduced by the Galerkin method to a Liénard equation with respect 

to the representative deflection, and the equation is found to be dependent on the gain and the configuration of 

the actuator.  By introducing the Liénard's phase plane, the equation is analyzed geometrically, and the essential 

characteristics of the beam and stabilization of the dynamic deformation are demonstrated. 

Keywords - feedback control, Liénard equation, piezothermoelastic laminate, vibration, von Kármán strain

I. INTRODUCTION 

Piezoelectric materials have been extensively used as 

sensors and actuators to control structural 

configuration and to suppress undesired vibration 

owing to their superior coupling effect between elastic 

and electric fields.  Fiber reinforced plastics (FRPs) 

such as graphite/epoxy are in demand for constructing 

lightweight structures because they are lighter than 

most metals and have high specific strength.  

Structures composed of laminated FRP and 

piezoelectric materials are often called 

piezothermoelastic laminates and have attracted 

considerable attention in fields such as aerospace 

engineering and micro electro-mechanical systems.  

For aerospace applications, structures must be 

comparatively large and lightweight.  Because of this, 

they are vulnerable to disturbances such as 

environmental temperature changes and collisions 

with space debris.  As a result, deformations due to 

these disturbances can be relatively large.  Therefore, 

large deformations of piezothermoelastic laminates 

have been analyzed by several researchers [1-3]. 

     The studies mentioned above [1-3] dealt with the 

static behavior of piezothermoelastic laminates.  

However, aerospace applications of these laminates 

involve dynamic deformation. Therefore, dynamic 

problems involving large deformations of 

piezothermoelastic laminates have become the focus 

of several studies [4-7].  In these studies [4-7], the 

dynamic behavior in the vicinity of the equilibrium 

state was analyzed.  Dynamic deformation deviating 

arbitrarily from the equilibrium state is very important 

from a practical viewpoint for aerospace applications.  

Therefore, Ishihara et al. analyzed vibration deviating 

arbitrarily from the equilibrium state and obtained the 

relationship between the deflection of the laminate 

and its velocity under various loading conditions [8-

10].  In these studies [8-10], methods to suppress 

undesired vibration due to known mechanical and 

thermal environmental causes were investigated; in 

other words, the manner of actuating, rather than the 

manner of sensing, was investigated. 

     In order to effectively suppress undesired vibration, 

it is important to consider both actuation and sensing 

and to integrate them into a feedback control system.  

Therefore, Ishihara et al. studied the control of the 

vibration of a piezothermoelastic laminate with a 

feedback control system under the framework of 

infinitesimal deformation [11-13].  However, as 

mentioned above, large deformation should be 

considered for applications of piezothermoelastic 

laminates. 

     In this study, therefore, we treat the control of the 

vibration with large amplitudes in a 

piezothermoelastic laminate with a feedback control 

system.  The analytical model is a symmetric cross-

ply laminated beam composed of fiber-reinforced 

laminae and two piezoelectric layers.  The beam is 

simply supported at both edges, and it is exposed to a 

thermal environment.  The undesired vibration of the 

laminate is transformed into electric current by the 

direct piezoelectric effect in one of the piezoelectric 

layers, which serves as a sensor.  Then, in order to 

suppress the vibration, the electric voltage, with the 
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magnitude of the current multiplied by a gain, is 

applied to the other piezoelectric layer which is at the 

opposite side of the sensor and serves as an actuator.  

Large nonlinear deformation of the beam is analyzed 

on the basis of the von Kármán strain [14] and 

classical laminate theory.  Equations of motion for the 

beam are derived using the Galerkin method [15].  

Consequently, the dynamic deflection of the beam is 

found to be governed by a Liénard equation [16], 

which features a symmetric cubic restoring force and 

an unsymmetric quadratic damping force due to the 

geometric nonlinearity.  The equation is geometrically 

studied in order to reveal the essential characteristics 

of the beam and to investigate how to stabilize the 

dynamic deformation. 

II. THEORETICAL ANALYSIS 

2.1 Problem 
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Fig. 1: analytical model 

 

The model under consideration is a simply supported 

beam of dimensions hba   and composed of N  

layers, as shown in Fig. 1.  The sk -th and ak -th 

layers (
ss kk zzz 1 , 

aa kk zzz 1 ) exhibit 

piezoelectricity (with poling in the z  or z  

direction), while the other layers do not. The beam is 

laminated in a symmetrical cross-ply manner. 

     The beam is subjected to temperature distributions 

 txT ,0  and  txTN ,  on the upper  2hz   and 

lower  2hz   surfaces, respectively, as thermal 

disturbances that may vary with time t .  Mechanical 

disturbance is modeled as the combination of the 

initial deflection and velocity. 

     To suppress the dynamic deformation due to the 

disturbances, the beam is subjected to the feedback 

control procedure: electric current  tQs
  is detected in 

the sk -th layer, which serves as a sensor to detect the 

deformation due to the disturbances; electrical 

potentials  tx
ak ,1  and  tx

ak ,  determined on the 

basis of  tQs
  are applied to the upper  1

akzz  and 

lower  
akzz   surfaces, respectively, of the ak -th 

layer, which serves as an actuator to suppress the 

deformation due to the disturbances.  Moreover, in 

order to suppress the deformation effectively, the 

sensor and actuator are designed as a distributed 

sensor and actuator [17], i.e., the width of the 

electrodes for the sk  and ak -th layers are variable as 

   xfbxb ss   and    xfbxb aa  , respectively. 

 

2.2 Governing Equations 
In this subsection, the fundamental equations which 

govern the dynamic deformation of the beam are 

presented. 

     Based on the classical laminate theory, the 

displacements in the x  and z  directions are 

expressed, respectively, as 
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where  txu ,0  and  txw ,  denote the displacements 

on the central plane  0z .  In order to treat 

nonlinear deformation, the von Kármán strain is 

introduced for the normal strain in the x  direction as 
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The electric field in the z  direction is expressed by 

the electric potential  tzx ,,  as 

 
z

Ez






. (3) 

     Assuming xx , zD , and T  denote the normal 

stress in the x  direction, the electric displacement in 

the z  direction, and the temperature distribution, 

respectively, the constitutive equations for each layer 

are given as 

   TEexPE iziixxixx   , (4) 

     TpxPEexPD iizixxiiz   , (5) 

where iE , i , ie , i , and ip  denote the elastic 

modulus, permittivity, piezoelectric constant, stress-

temperature coefficient, and pyroelectric constant, 

respectively, in the i -th layer, and 
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The function  xPi  takes values of +1 and -1 in the 

portions with poling in the z  and z  directions, 

respectively. 

     By substituting (2) into (4) and integrating without 

and with multiplication with z, for 22 hzh   we 

have the constitutive equations of the laminated beam 

as 
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where xN  and xM  denote the resultant force and 

moment, respectively, defined by 

    
2

2
d,1,

h

h
xxxx zzMN  . (8) 

T

xN  and T

xM  denote the thermally induced resultant 

force and moment, respectively, per unit width 

defined by 
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E

xN  and 
E

xM  denote the electrically induced resultant 

force and moment, respectively, per unit width.  By 

considering    xfbxb ss   and    xfbxb aa  , 

E

xN  and 
E

xM  are, respectively, defined by 
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From (10), it is found that    xfxP aka
 and 

   xfxP aka
, namely the profiles of poling directions 

and widths of the electrodes, determine the effective 

contribution of the electric field to the electrically 

induced resultant force and moment.  A  and D  

denote the extensional and bending rigidities, 

respectively, defined by 

    





N

i

z

z
i

i

i

zzEDA
1

2

1

d,1, . (11) 

     Equations of motion for the laminated beam are 

given as 
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where   is defined by 
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and denotes the mass density averaged along the 

thickness direction. 

     By substituting (7) into (12), we have the equations 

which govern displacements 
0u  and w  as 
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where the definitions of differentiation operators 
1L  

and 2L  are given as 
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Because the beam is simply supported at both edges, 

the mechanical boundary conditions are expressed as 

 axMwu x ,0;0,0,00  . (16) 

     The thermally induced resultant force and moment, 
T

xN  and T

xM , and the electrically induced resultant 

force and moment, E

xN  and E

xM , must be determined 

in order to solve (14).  Assuming that the thickness of 

the beam h  is sufficiently small compared to its 

length a , the temperature distribution is considered to 

be linear with respect to the thickness direction, and it 

is given as 

 

      

    













txTtxT
h

z

txTtxTtzxT

N

N

,,

,,
2

1
,,

0

0

. (17) 

Substituting (17) into (9) gives 
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By assuming the thicknesses of the sk -th and ak -th 

layers are sufficiently small compared to its length a , 

the electric field distributions in both layers are 

considered to be linear with respect to the thickness 

direction, and they are given as 
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By substituting (3), (6), and (19) into (10), we have 
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where 
akP  and 

skP  are rewritten as aP  and sP , 

respectively, for brevity. 

     In summary, (14) combined with (18) and (20) and 

the boundary conditions expressed by (16) are the 

equations that govern 0u  and w , that is, the dynamic 

deformation of the beam.  Note that the applied 

electric potentials  tx
ak ,1  and  tx

ak ,  are 

determined on the basis of the electric current  tQs
 . 

 tQs
  reflects the dynamic deformation of the beam, 

and the manner in which  tQs
  reflects this dynamic 

deformation is explained in the following subsection. 

The procedures to determine  tx
ak ,1  and  tx

ak ,  

are provided in Subsection 2.5. 

 

2.3 Sensor Equation 

The detected electric current  tQs
  is related to the 

dynamic deformation of the beam through the direct 

piezoelectric effect of the sensor layer.  By 

considering    xfbxb ss  , the electric charge  tQs  

is evaluated by 
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By substituting (2), (3), (5), (17), and (19) into (21), 

differentiating the result with respect to t , and 

applying the virtual short condition 
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It should be noted that  tQs
  can be detected under 

the virtual short condition of (22) by a current 

amplifier [17], for example.  Thus, the detected 

electric current  tQs
  is related to the dynamic 

deformation of the beam. 

 

2.4 Galerkin Method 
The Galerkin method [15] is used to solve (14) under 

the condition described by (16) because (15) is a set 

of simultaneous nonlinear partial differential 

equations.  Trigonometric functions are chosen as the 

trial functions to satisfy (16), and the considered 

displacements are expressed as the series 

       





1
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m

mmm xtwtuwu  , (24) 

where 

 
a

m
m


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Then, the Galerkin method is applied to (14) to obtain 
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Moreover, the distributions of temperature on both 

surfaces of the beam and those of the electric potential 

on both surfaces of the ak -th layer are assumed to be 

uniform.  Thus, one has 
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Substituting (22) and (27) into (18) and (20) gives 
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where 
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. (29) 

In order to satisfy (16), T

xM  and E

xM  are evaluated 

by using their Fourier series expansions as 
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where  tM T

mx,  and  tM E

mx,  are given as 
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Moreover, in order to construct a modal actuator [17], 

the profiles of poling direction and the width of the 

electrode in the ak -th layer are designed to be 

      xxfxP
amaa sin . (32) 

Then, from (28) and (32), one has 
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x  sin,sin 0,0,  , (33) 

from which it is found that the actuator induces the 

am -th mode. By substituting (28) and (33) into (31), 

we have 
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By substituting (15), (24), (25), (28), (30), and (33) 

into (26), the simultaneous nonlinear equations with 

respect to  tum  and  twm  are obtained as 
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where the definitions of ij  , ijk , ijks , , and ijklc,  are 

given in the previous paper [8].  Moreover, by 

eliminating  tum  from (35), we obtain the 

simultaneous nonlinear ordinary differential equations 

with respect to  twm   ,,3,2,1 m  as 
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where 
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     Moreover, in order to construct a modal sensor 

[17], the profiles of poling direction and the width of 

the electrode in the sk -th layer are designed to be 

      xxfxP
smss sin . (38) 

From (23), (24), and (27), we have 
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Moreover,  tum  in (39) is eliminated using (35) to 

give 
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     In order to extract the fundamental physical 

characteristics of the dynamic behavior of the beam, 

the most fundamental mode is treated as 

     xtwwxtuu 1111

0 sin,sin   . (41) 
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It should be noted that, from (25) and (41),  tw1  

denotes the deflection of the beam at its center.  In 

order to control the deformation described by (41), the 

electrode on the actuator is designed as 

 1am . (42) 

By considering (35) for 1m , one has 
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where Lk1 , 
Ak 11,1 , 

Nk 1 1 1,1 , 1p , and Ap1  defined by (37) 

are reduced, using Eqs. (41) and (42), to 
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     Because the first mode is treated as in (41), the 

electrode on the sensor is so designed that 

 1sm . (45) 

Then, from (39) and (41), one has 
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2.5 Equation for Feedback Control 
In this subsection, we derive the equation to treat the 

control of the free vibration of the beam exposed to 

constant and uniform temperature. 

     We consider that the temperature on the upper and 

lower surfaces of the beam is constant and uniform as 

      tTtTN 0 , (47) 

which leads to 

   tzxT ,, , (48) 

from (17), (27), and (47). From (28), (34), (46), and 

(47), we have 
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where 
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represents the stress-temperature coefficient averaged 

with respect to the thickness direction. 

     We consider that the electric voltage applied to the 

actuator,     tt
aa kk 1 , is designed to be 

proportional to the electric current detected by the 

sensor,  tQs
 , as 

      tQGtt skk aa

 1 , (52) 

where G  denotes the gain of the feedback control. 

     By substituting (29), (44), (49), and (52) into (43) 

and (50), we have 
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where  

  
22

,0
11  




 ssaa

sa

kkkk

pkkp

zzzz
zeee  

  ... (55) 

and pz  denotes the z  coordinate of the central plane 

of the actuator.  The case of 0pz  is treated for 

brevity.  By introducing the nondimensional 

quantities as 
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(53) and (54) are nondimensionalized, respectively, as 
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Thus, from (56)-(58), it is found that the 

nondimensional deflection W  and the 

nondimensional electric current I  are governed by 

nondimensional parameters  , p   210  p , 

and  , which denote the rigidity reduced by 

temperature, position of the actuator, and gain, 

respectively.  By substituting (58) into (57), we have 
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It is found that (59) has a set of equilibrium solutions 

 0W , (60) 

for 0  and 

  ,0W , (61) 

for 0 .  Solutions described by (60) and (61) are 

different in nature.  In this study, we consider that the 

temperature is lower than a critical value cr  as 

 cr , (62) 

where cr  is defined by 

 
h

D

e

 2

1
cr  . (63) 

From (56), (62), and (63), it is found that the 

condition described by (62) leads to the condition 

 0 , (64) 

which makes the linear rigidity in (59) positive. It 

should be noted that the temperature described by (63) 

is referred to as the buckling temperature. 

     In order to extract the governing parameters under 

(64), nondimensional quantities are introduced as 

 




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p
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16

3
,,,  , (65) 

where x , t ,  , and z  denote the nondimensional 

quantities of the deflection, time, gain, and actuator's 

position, respectively, and x , z , and t  are different 

from the coordinates and the time variable defined in 

Subsection 2.1.  Hereafter, x , z , and t  are employed 

in the sense of (65) for brevity. Then, (59) is 

nondimensionalized as 

     0
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2
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zxf
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where functions  zxf ,  and  xg  are defined as 

       3

2
,42

9

16
, xxxgzxzxzxf 


. (67) 

The equation with the form of (66) is known as 

Liénard's equation [16].  Particularly, if  xg  is 

replaced with a linear function x  and  zxf ,  with a 

symmetric function  12 x , (66) is referred to as van 

der Pol equation.  The cubic term in  xg  defined by 

(67) is derived from the nonlinear term 
2

2

x

w
Nx




 in 

(12) combined with (7). The function  zxf ,  defined 

by (67) is unsymmetric with respect to 0x  because 

the weight of the nonlinear term 
2

2

x

w
Nx




 in the left-

hand side of (12) is different from that of the 

nonlinear term 

2

2

1













x

w
 in the second and third terms 

on the right-hand side of (2).  In the context of this 

research, the first, second, and third terms on the left-

hand side of (66) are the terms of inertia, damping, 

and restoring force of the system, respectively. 

     From (66) and (67), it is found that (66) has its sole 

equilibrium solution 0x .  We call the function 

 zxf ,  as the damping characteristic function in the 

sense that it describes the dependency of the damping 

intensity for a deflection x .  A numerical example of 

the damping characteristic function  zxf ,  is shown 

in Fig. 2. 
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Fig. 2: damping characteristic function 

 

Because  zxf ,  is positive in the vicinity of 0x , it 

is found that the equilibrium solution 0x  is locally 

stable for 0 .  Moreover, from (67) or Fig. 2, it is 

found that 

   zxzzxf 42for0,  . (68) 

Therefore, the equilibrium solution 0x  is expected 

to be not only locally but also globally stable within a 

certain range around 0x .  Conversely, from (67) or 

Fig. 2, it is found that 

   zxzxzxf 4or2for0,  , (69) 

which gives the system negative damping for 0 .  

In that case, it is expected that a vibration with 

relatively large amplitude will be unstable. 

     Therefore, it is important to determine the range of 

deformation in which the system is operated stably.  

For this purpose, the governing equation, (67), is 

analyzed geometrically by introducing the Liénard's 

phase plane [18]  yx,  that is governed by 

     xgyzxFyx



1

,,   , (70) 

where the overdot denotes differentiation with respect 

to t , and  zxF ,  is defined by 
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It should be noted that elimination of y  in (70) leads 

to the original governing equation, (67).  From the 

first part of (70), we have 
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  zxF
x

y ,



. (72) 

Thus, we call y  the modified velocity in the sense 

that it is related to the actual velocity x .  Figure 3 

shows the characteristics of the phase plane governed 

by (70).  The solid lines in red denote 

  zxFyx ,,0  , (73) 

which make the right-hand sides of (70) null and are, 

therefore, called nullclines.  From (70), it is found that 

the nullclines in (73) divide the phase plane shown in 

Fig. 3 into four parts by the signs of x  and y .  The 

broken arrows in Fig. 3 denote the directions of the 

trajectories governed by (70).  The examples of the 

trajectories are indicated by blue lines in Fig. 4.  The 

point  00 , yx  denotes the initial combination of  yx, . 
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Fig. 3: characteristics of Liénard's phase plane 
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Fig. 4: examples of trajectories 

 

From Fig. 4, it is found that a trajectory may move 

toward or away from the equilibrium point 

   0,0, yx ; in other words, the vibration may be 

stable or unstable.  Therefore, it is expected that there 

is a closed boundary line that divides the stability as 

indicated by the broken line in Fig. 4.  Such a line is 

usually called the limit cycle.  It should be noted that 

the limit cycle is numerically obtained by changing 

the variables as tt   in (70) for an arbitrary initial 

condition and, therefore, is dependent on parameters 

  and z . 

III. NUMERICAL RESULTS 
As stated in Subsection 2.5, the limit cycle divides the 

stability in the phase plane.  In other words, the 

trajectories that start inside the cycle lead to the sole 

equilibrium point    0,0, yx .  Therefore, it is 

important to investigate the shape of the limit cycle.  

In this section, the effects of parameters   and z  on 

the shape of the phase plane are investigated. 

 

3.1 Effect of Gain 
In this subsection, the effect of the nondimensional 

parameter  , which represents the gain of the 

feedback control, is described. 

     Figures 5 (a)-(d) show the limit cycles for various 

values of  , in which the blue solid lines and red 

broken lines denote the limit cycles and the nullclines 

determined by (73), respectively.  In Fig. 5, the limit 

cycles are found to be horizontal  0dd  xyxy   

or vertical  0dd  yxyx   on the nullclines, which 

is found also from (70) and (73).  Moreover, as shown 

in Fig. 3, the abscissa or the ordinate of a limit cycle 

becomes maximum or minimum on the nullclines. 

     From Fig. 5, it is found that, as the value of   

increases, the shape of the limit cycle converges to the 

shape shown in Fig. 5 (d).  This tendency for 1  

is explained using (70) as follows.  At a point such as 

    1~,  zxFy , equation (70) implies 

  1~  x  and   1~ 1  y , which 

corresponds to the quasi-horizontal branches of the 

cycle.  In these branches, the trajectory quickly and 

quasi-horizontally moves to the nullcline  zxFy ,  

because   1~  x  and   1~ 1  y .  

However, once the trajectory approaches the nullcline 

so closely that     2~,  zxFy , then x  and y  

become comparable as  1~  x  and  1~  y , 

and the trajectory moves nearly along the nullcline. 
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(b) 10  
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(c) 20  
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(d) 50  

Fig. 5: effect of gain on limit cycle  3.0z  

 

As x  increases, y  increases compared with x .  

Therefore, the trajectory approaches the nullcline and 

finally crosses the nullcline vertically, as shown in Fig. 

3. 

     The maximum and minimum values of the abscissa 

and ordinate of a limit cycle are important 

characteristics of the cycle because they correspond to 

the limit within which the system is operated safely.  

To be more precise, the maximum and minimum 

values of the abscissa correspond to the upper and 

lower limits of the initial position when the initial 

modified velocity is zero, and those of the ordinate 

correspond to the upper and lower limits of the initial 

modified velocity when the initial position is zero.  In 

view of these facts, we refer to the maximum and 

minimum values of the abscissa of a limit cycle as the 

upper and lower limits of the initial position, 

respectively, and refer to those of the ordinate of the 

cycle as the upper and lower limits of the initial 

modified velocity, respectively.  In addition, we refer 

to the maximum and minimum values of the actual 

velocity x  along the limit cycle as the upper and 

lower limits of the actual velocity, respectively. 

     Figure 6 shows the variations of the upper and 

lower limits of the position, modified velocity, and 

actual velocity with parameter  , in which subscripts 

“upper” and “lower” correspond to the upper and 

lower limits, respectively.  From Figs. 6 (a) and (b), it 

is found that, as   increases, the upper and lower 

limits of the position and modified velocity change 

monotonically and converge to certain values as 

explained previously.  From Fig. 6 (c), it is found that 

the upper limit of the actual velocity increases as   

increases and that the lower limit has a local 

maximum. 

     Usually, a larger value of   is preferable in order 

to quickly pull the system back to the equilibrium 

point    0,0, yx .  However, as shown in lowerx  in 

Fig. 6 (a), the limit within which the system is 

operated safely may decrease.  In this regard, the safe 

ranges of the initial position initialx , modified velocity 

initialy , and actual velocity initialx  are investigated.  

From Fig. 6, it is found that the system is stable for an 

arbitrary value of   when initialx , initialy , and initialx  

satisfies 

    01 upperinitiallower   xxx , (74) 

    11 upperinitiallower   yyy , (75) 

and 

    013 upperinitiallower   xxx  , (76) 

respectively. 
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Fig. 6: variations of upper and lower limits with gain 

 3.0z  

 

3.2 Effect of Actuator Position 
In this subsection, the effect of the nondimensional 

parameter z , which represents the actuator position in 

the laminated beam, is described. 
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(b) 3.0z  
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(c) 5.0z  
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(d) 1z  

Fig. 7: effect of actuator position on limit cycle 

 10  

 

     Figures 7 (a)-(d) show the limit cycles for various 

values of z , in which the blue solid lines and red 

broken lines denote the limit cycles and the nullclines 

determined by (73), respectively.  Figures 8 (a), (b), 

and (c) shows the variation of the upper and lower 

limits of the position, modified velocity, and actual 

velocity, respectively, with parameter z . 
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(b) modified velocity 
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Fig. 8: variations of upper and lower limits with 

actuator position  3.0z  

From Figs. 7 and 8, it is found that the range in which 

the system is operated safely becomes wider as z  

increases.  This is explained as follows.  From (55), 

(56), and (65), parameter z  corresponds to the 

actuator position in the laminated beam. From (28) 

and (29), it is found that, the farther out the actuator is 

installed, the greater the electrically induced resultant 

moment becomes. 

IV. CONCLUSION 
In this study, we treated the control of the free 

vibration with large amplitude in a piezothermoelastic 

laminated beam subjected to a uniform temperature 

with a feedback control system.  On the basis of the 

von Kármán strain, classical laminate theory, and the 

Galerkin method, the beam was found to be governed 

by a Liénard equation dependent on the gain of the 

feedback control and the configuration of the actuator.  

By introducing the Liénard's phase plane, the equation 

was analyzed geometrically, and the essential 

characteristics of the beam and stabilization of the 

dynamic deformation were clearly demonstrated. 

     The above-mentioned simplification of the Liénard 

equation is significantly advantageous because the 

essential dependence of the system behavior on the 

system parameters is clearly demonstrated.  Moreover, 

the above-mentioned approach is effective for 

nonlinear problems because their explicit solutions are 

rather difficult to obtain.  However, our approach is 

not suitable for cases in which coupling among plural 

modes is involved. 

     The findings in this study are considered to serve 

as fundamental guidelines in the design of 

piezothermoelastic laminate used for lightweight 

structures vulnerable to large deformation due to 

mechanical and thermal disturbances. 
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